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Abstract. We present a simple fractal model of the interface between oil and water in 
viscous fingering or the cluster boundary in diffusion-limited aggregation (DLA). The 
continuum equations for immiscible displacement of Newtonian fluids with no surface 
tension in a porous medium are solved analytically to find the flow velocity on the boundary. 
The moments of the velocity distribution scale with the size of the system yielding a family 
of exponents. The scaling depends on the geometry of the interface and the oil/water 
viscosity ratio. For an infinite viscosity ratio, which corresponds to DLA, the form of the 
scaling is in qualitative agreement with the numerical results of Amitrano er al. The method 
can be easily extended to study other systems with a fractal boundary condition. 

For an incompressible Newtonian fluid in a porous medium obeying Darcy’s law, 

v = (k / t ) )V4 (1) 

v - v = o  (2) 
where V is the fluid velocity, k the porosity, 4 the pressure and t) the viscosity. 

The pressure obeys Laplace’s equation, V2+ = 0. For immiscible displacement with 
negligible surface tension, the pressure and normal fluid velocity are continuous at the 
boundary between the two fluids. 

For diffusion-limited aggregation ( DLA) (Witten and Sander 1981) the concentration 
c of walkers outside the cluster obeys the steady-state diffusion equation, V2c = 0, with 
c = 0 on the cluster and a constant at infinity. The average growth speed V on the 
perimeter is given by the incident flux of particles 

V = V c . n  ( 3 )  
where n is a unit normal to the cluster. 

As pointed out by Paterson (1984) these are the same equations as for viscous 
fingering where the displaced fluid has an infinite viscosity. In such a case DLA-type 
patterns have been seen experimentally for fingering in random porous networks (Chen 
and Wilkinson 1985, Nittmann et a1 1985, 1986, Maloy et a1 1985, Ben-Jacob et a1 
1985, 1986, Daccord et a1 1986, Van Damme et a1 1986, Nittmann 1986, Buka et a1 
1986). Also other systems obeying similar continuum equations but with different 
microscopic mechanisms produce closely related patterns, such as electrodeposition 
(Brady and Ball 1984, Grier et a1 1986, Sawada et al 19861, dielectric breakdown of 
an insulator in a high electric field (Niemeyer et a1 1984), dendritic solidification 
(Langer 1980), diffusion-limited polymerisation (Kaufman et a1 1986) and single 
crystalline domains in lipid monolayers (Miller et a1 1986). In all these examples the 
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boundary on which growth occurs has structure of many sizes and  can be characterised 
by a fractal dimension, df (Mandelbrot 1982). Moreover, there are other situations 
where we want to understand the behaviour of a Laplacian field near a static rigid 
fractal (Cates and  Witten 1986). It could arise that catalysis on a fractal substrate is 
limited by the steady-state diffusion of free reactants onto the adsorbing surface. The 
flow velocity of a fluid near a fractal in solution also obeys Laplace's equation, although 
here we have a vector rather than a scalar field. 

For DLA we define a probability p I  that site i on the perimeter r next becomes part 
of the cluster. Then we look at the moments: 

in which ( q  - 1 ) D (  q )  was originally introduced to describe turbulence (Mandelbrot 
1974) and later to characterise random resistor networks (de Arcangelis et (11 1985). 
This simple description reveals a rich scaling structure for DLA (Halsey et a1 1986b). 
An extension of this idea is to look at the moments of the velocity V in viscous fingering 
and how they scale with the size L of the system: 

( 5 )  ( V4) - L u ( q )  

where v ( q )  gives a non-trivial family of exponents describing the growth. 

fluid boundary, the two sets of exponents are related as follows: 
For fingering in a planar geometry with a constant velocity Vo a long way from the 

(6) 

Notice that the sum of the probabilities p ,  is unity whilst the total flux across the 
fluid boundary is VOL. 

We now look at the distribution of p ,  (Halsey et a1 1986a, b). Let n ( p )  d log(p) 
be the number of sites on the cluster which have a probability p ,  of growth in the small 
interval log( p )  * d log( p ) .  We write Z( q )  as 

v( 4 1 = -( 4 - 1 ) D( 4 )  - 4 + 9. 

then assuming the scaling p - L-" and n (  p )  - 15""' we obtain 

(8) Z( q )  = L"" I-'" log( L )  d a .  J 
Evaluating the integral by steepest descents we can say that 

( 4  - 1)D(q) = P ( q )  - f ( s )  (9) 

where a f l aa  = q. We can then plot f as a function of CY and  say that the contributions 
to the moments come from L""' points with growth probabilities scaling as L-". 

We solve Laplace's equation on a simple model fractal in two dimensions to find 
an  analytic expression for v ( q ) .  This gives us a physical understanding of the origin 
of the scaling and its nature. The method can be easily extended to other systems with 
a fractal boundary condition. 

Consider the cosine wave whose wavelength A ,  is equal to the size of the system L: 

k , = 2 ~ / A ,  (10) Y = A I E I  COS(k,so) 
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as shown in figure l ( a )  where s, is the coordinate along the curve. Now buckle the 
surface with another wave m ,  times smaller than the first. That is, k2 = m , k l  and the 
amplitude is E , A ~ .  This is not the simple addition of two waves; the second is added 
perpendicular to the surface of the first (figure l ( b ) ) :  

y ,  = h Z E 2  cos(k2s1 + el). (11) 

Repeat this process with a succession of waves until the shortest wavelength is equal 
to the pore size. We should be able to describe any connected shape in two dimensions 
with a suitable set of E ,  m and 8. For simplicity we take E and m to be the same at 
each stage and the 6 to be random and independent of each other: E < 1 and m > 1. 
If we have n stages of buckling then m" = L and so 

n = log L/log m. (12) 
The boundary is self-similar. This process may be regarded as a smooth but 

statistical adaptation of the Koch curve construction (Mandelbrot 1982). It is only 
well defined in two dimensions, but all the equations below easily generalise to higher 
dimensions. Notice that we are using only O(1og L) coordinates to describe an interface 
of length L. We do not know if this amount of information would be sufficient to 
describe any self-similar perimeter. 

We measure df by considering the increase in apparent arc length at each change 
of scale (Mandelbrot 1982): 

d f =  1 + ~ * / 4  log m + O( E ~ ) .  (13)  

Fully developed curves are shown in figure 2. This model is chosen because, when 
each buckling is well separated in length, we can find the velocity distribution on the 
curve analytically as a power series in E. This model cannot, however, account for the 
highly branched shapes of DLA clusters. Nevertheless, numerical simulations (King 
1987) indicate that for finite viscosity ratios, the fingering displacement is compact but 
the interface is fractal, with a lower dimension (i.e. less branched) than DLA, which 
decreases with decreasing viscosity ratio. We demonstrate the scaling structure of a 

Ib)  

Figure 1. The first ( a )  and second ( b )  stages in the buckling of the interface. 
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Figure 2. The interface after many many stages of buckling. ( a )  m = 5 ,  E = 0.8 and d ,  = 1.10. 
( b )  m = 3 ,  E =0.8, d , =  1.15. The large value of E is chosen so that the discrete stages of 
buckling can be clearly seen. Notice particularly that curves can contain overhangs even 
where d ,  is close to unity. When the stages of buckling are well separated in length (as in 
( a ) )  we are able to find, analytically, the scaling of the velocity distribution on such a 
curve as a power series in E ,  the dimensionless amplitude of each crinkle. 

Laplacian field on this fractal boundary and its dependence on the viscosity ratio and  
the geometry. 

First consider a flat boundary perturbed by a single small cosine wave. We solve 
Laplace’s equation as a power series in the dimensionless amplitude E of the wave. 
The boundary conditions are that the pressure 4 and the normal velocity are continuous 
at  the interface, with a constant velocity V, at infinity (see (1)) .  This calculation is 
similar to the stability analysis of Chouke et a1 (1959) with no surface tension. Because 
we are dealing with a finite viscosity ratio, we solve for the pressure in both fluids. 
The velocity V(s,) normal to the boundary is 

~ ( s , )  = V,(I + Y E  cos s,-f&’sin’ so) (14) 

~=(770, , -77w,, , ) / (77o, i+ qwater). (15)  

where 

The surface crinkling makes a small perturbation to the mean velocity V,. If the 
oil is more viscous than the water displacing it then the flow is unstable and the initial 
buckling grows. 

In our model, consider the fluid flow with the addition of the next largest wave. 
If m >> 1 then we assume that a point on the smaller wave perturbs the velocity field 
about the local mean V(s,) and not V,: 

Then after n stages we can write a recursion relation 

v(s,,) = v ( s , - , ) [ i  + Y E  COS(S, + e,) - $ E ’  sin2(s,, + e,,)]. (17) 
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We have the same structure on many length scales. On each scale the velocity is 
altered by a similar small amount so that the final field is a product of the perturbations. 
The scaling depends upon having similar structure over a range of lengths and also 
that the velocity field V is multiplicative. In particular, if the normal fluid velocity on 
our model fractal after n - 1 stages of buckling is V(s,-]), where s,-, is the coordinate 
along the interface, then, if the next perturbation at the nth stage is on a much smaller 
scale, we can calculate V(s,) as the velocity field from a single stage of buckling 
perturbed about a local mean V(s,-,) (17). This is the origin of the scaling. A longer 
discussion of the variety of fields which display a multifractal behaviour is given by 
Coniglio (1986). We expect to see scaling if the pressure field 4 is invariant under 
the transformation 4 + cq5. The velocity field V, which is the gradient of 4, has the 
same transformation properties. 

We now find the moments. If V at each stage is known as a power series in E ,  

then we can also obtain v(q) as a series expansion in E. All the coordinates are 
independent of each other. The tangential velocity makes no contribution at this level 
of approximation. We have 

Equation (186) contains an integral along the coordinate s. We have 

(V4) = v:zn ( 1 9 ~ )  

where, to second order, 

Z = (1 - ~ ’ / 4 ) / 2 n  exp[q(ye cos s - f s2  sin’s - f ( y ~ ) ’  cos2 s)] lo2r 
x (1 +$&’sin’ s )  ds. (19b) 

For y =  1, Z contains two standard integrals: Z = exp(-iqE2) [Zo(qE) - (~’ /4)Z~(q&)] ,  
where Io and Z2 are modified Bessel functions of zeroth and second order respectively. 
Remember that n = log L/log m and hence ( Vq) = V~L”g’’rogm - L”(4),  and so we obtain 

(20) 4 q )  = IIog[Zo(qE) - (E2/4)~z(qE)1 -fqE2)/log m. 

The limiting forms of this expression for small and large lqsl are shown in the equations 
below, with the substitution y = 1. 

For intermediate y the integral can be performed easily in two limits. 
( i )  For J q ~ l < <  1 the integral in equation (19b) is expanded as a power series in q E  

and the integration is performed term by term: 

4 q )  = ( E 2 / 4  1% m)[q’r2-(l  + Y2)q1+o[(qE)31. (21) 

If x = log( V/ V,) then x is normally distributed. The probability distribution of x, 
P ( x ) ,  is 

(22) P ( X )  = 1 / (m2y2n)”*  exp{-[x+ nE2(y2+ 1)/4]’/(ne’y2)). 
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(i i)  For 1qyEI >> 1 the integral is evaluated by the method of steepest descents. For 
q '0  

(23) v ( q ) =  q ( y E - 3 ~  E )/log m-log{q[yE-E2(y2-1)I}/210g m + O [ l / ( q y ~ ) I  

and for q < 0 

v(q)=-q(yE+iy2E2)/10g m - l o g { q [ - y ~ + ~ ~ ( y ~ - 1 ) ] } / 2  log m+O[l / (qys) ] .  (24) 

1 2 2  

When y = 0 there is no viscous instability and we easily derive the results: 

v ( q )  = -cp2/4 log m + o [ ( ~ E ~ ) ~ ]  for 1qe21<< 1 (25) 

and 

4 4 )  = 0 for large 1qE21.  (26) 
We use (6) to re-express v ( q )  as ( 9 -  l ) D ( q )  which is plotted in figures 3 and 4. 

Figure 5 is a plot o f f  against CY, in which a ,  is given by 

a, = 1 - ( y e  --4y2E2)/log m. (27) 

The graphs of ( q  - l ) D ( q )  (figures 3 and 4) have the following two features. 
(i) For large q both positive and negative: 

( 4  - 1 ) m q )  = D+,q q + *a. (28) 
The graph is linear. The high-order positive moments are dominated by the most 
protruding tips. If V,,, is the maximum speed of the interface which scales as L", then 

(29) 
The scaling is simple. Similarly, for large negative moments, ( V 9 ) -  V:in. In DLA 

(Halsey et a1 1986b, Amitrano et a/ 1986) and for experiments on viscous fingering 
with an infinite viscosity ratio (Nittmann et a1 1987) these asymptotic regimes are 
found to exist for lql> 2. 

( vq) - v:ax - Lmq. 

iq-1 IDIg 

- d  

A 

Iq-1)U lq )  

-1  

Figure 3. Schematic graph of the exponents of the 
growth probability distribution showing the effect o f  
increasing the viscosity ratio y from 0 to 1, as indi- 
cated by the arrows. 

Figure 4. Schematic graph of the exponents of the 
growth probability distribution showing the effect of 
the buckling coordinates, decreasing m and increas- 
ing E as indicated by the arrows. The dependence 
is similar for all viscosity ratios. 
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f t 

Figure 5. Fractal dimension f plotted against fractal singularity a showing the effect of 
decreasing the viscosity ratio y as indicated by the arrow. 

(ii) For the smaller moments many portions of the interface give significant contri- 
butions and the scaling departs from linearity. This roughly parabolic region about 
q = 0 is seen numerically (Amitrano et a1 1986) and experimentally (Nittmann et a1 
1987). The probability distribution of the velocity is extremely broad. This rich 
‘mutifractal’ behaviour is also observed in Meakin’s screened growth model (Meakin 
1983, 1986, Meakin et a1 1985) and the electrical current and flicker noise distributions 
through fractal resistor networks (de Arcangelis et a1 1985, Rammal et a1 1985). 

The value of a, a, , where f = 0 and q is positive represents the strongest singularity 
seen on a typical interface, i.e. the most likely maximum tip velocity. This fastest 
growing tip will dominate the growth and indicates the mass dimension d ,  of the 
displacement if we allowed the system to develop. It can be shown that (Turkevich 
and Sher 1985): 

d , = l + a , .  (30) 
DLA is all interface, so d ,  = df, but for y < 1 the fingers will fatten, indicating that d ,  
and dr are unlikely to be equal. I t  is possible that d ,  may equal 2 (the dimension of 
space here) while d,#  1 (the fluid boundary is still fractal). In our model, for given 
E and m, a, increases with decreasing y. 

The model also allows, however, for smaller values of Q with negative f: This 
corresponds to rare, atypical arrangements of the interface and arises from the logarith- 
mic correction to the linear form of ( q - l ) D ( q )  as q+*m; see (23) and (24). It is 
possible, but unlikely, that all our waves could be in phase; in fact the largest tip 
usually derives from most of the bucklings being nearly in phase. Similarly for DLA, 

any lattice animal could be grown, some possibly with stronger singularities on the 
perimeter than are usually seen, but this is very unusual. The negative f indicates that 
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the chance of such an atypical cluster being produced is proportional to a negative 
power of L. The numerical results (Halsey er a1 1986b, Amitrano et a1 1986) indicate 
that ( q  - l ) D ( q )  is exactly linear as q + 00 and hence d, = 1 +a,. This would be true 
if the probability of forming atypical singularities were lower than any negative power 
of L (for instance exp(-L)). In any case am- a, is small for our model; that it might 
not have been could have arisen from the considerable approximations we have made. 
The existence of negative f is also found in the scaling of the moments of a Laplacian 
field near absorbing random and self-avoiding walks (Cates and Witten 1986). 

We could try to fix E and m to give a best fit to the numerical data, but there is 
no physical reason to do this. Also, the conditions E < 1 and m >> 1 means that we do 
not account for the highly branched shapes seen experimentally. This also means that 
the bulk of the fluid is initially non-fractal (d, = 2) .  If we did allow the interface to 
advance, within these constraints, the self-similarity of the structure would be lost. 
We find that 

a & / a t  = k,E + O ( E ~ ) .  (31) 
All the modes grow exponentially and the smallest ones fastest. However, in the 

great variety of experimental situations already mentioned, the interface does remain 
fractal and our work predicts a rich scaling structure in such cases. A more sophisticated 
approach taking into account higher-order terms in (31 )  might be able to place a 
condition on the coordinates E ,  such that v ( q )  does not change with time. 

All we have been able to do is solve Laplace’s equation on a simple static fractal 
model. However, the analysis gives us an understanding of the rich and complex 
behaviour of a fractal boundary in an external field as well as indicating the scaling 
properties of large-scale viscous fingering with a finite viscosity ratio, which has yet 
to be studied. We can also see clearly the effect of geometry on the scaling structure. 
The approach could also be applied to other systems with a fractal boundary condition. 

MJB is grateful for a CASE award from British Petroleum and the SERC. 
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